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In this work, we develop a new algorithm for nonequilibrium molecular dynamics of fluids under
planar mixed flow, a linear combination of planar elongational flow and planar Couette flow. To
date, the only way of simulating mixed flow using nonequilibrium molecular dynamics techniques
was to impose onto the simulation box irreversible transformations. This would bring the simulation
to an end as soon as the minimum lattice space requirements were violated. In practical terms, this
meant repeating the short simulations to improve statistics and extending the box dimensions to
increase the total simulation time. Our method, similar to what has already been done for pure
elongational flow, allows a cuboid box to deform in time following the streamlines of the mixed
flow and, after a period of time determined by the elongational field, to be mapped back and recover
its initial shape. No discontinuity in physical properties is present during the mapping and the
simulation can, in this way, be extended indefinitely. We also show that the most general form of
mixed flow, in which the angle between the expanding �or contracting� direction and the velocity
gradient axis varies, can be cast in a so-called canonical form, in which the angle assumes values
that are multiples of � �when a mixed flow exists�, by an appropriate choice of the field
parameters. © 2010 American Institute of Physics. �doi:10.1063/1.3489683�

I. INTRODUCTION

Homogeneous nonequilibrium molecular dynamics
�NEMD� techniques have been successfully employed to
characterize the rheology of many classes of simple and
polymeric fluids because they allow one to study bulk prop-
erties by means of synthetic algorithms combined with ap-
propriate periodic boundary conditions �PBCs�. PBCs have
to be compatible with each particular type of flow one wants
to simulate, so as not to introduce any spurious dynamics.
Finding PBCs for every type of flow is still an open problem.
Standard flows can be divided into shear and shear-free flows
according to the value of the off-diagonal components of the
strain-rate tensor �shear-free flow corresponds to the case of
zero off-diagonal components�. We will concentrate our at-
tention on planar flows. Many studies have been done on
planar shear flow �planar Couette flow �PCF�� and fewer on
planar elongational flow �PEF�; because they are simple to
characterize, efficient simulation techniques have already
been implemented and they are present in almost every real
flow situation. Even if these flows are simplifications, their
study has proven to be useful in understanding many indus-
trial processes such as extrusion, injection molding, and
sheet casting, but also in biological systems such as DNA
chain dynamics.1 For simple PCF, the Lees–Edwards PBCs
�Ref. 2� make it possible to extend a simulation for an arbi-

trary amount of time. Unfortunately, these are ad hoc PBCs
and it is not possible to generalize them to other flow geom-
etries. A general PBC procedure, applicable to every flow,
requires the deformation of the simulation box to follow the
streamlines of the flow. However, the simulation can be ex-
tended indefinitely only if it is possible to perform a mapping
of the cell such that the initial configuration is periodically
recovered �without causing any discontinuity in the physical
properties�. For the remapping to take place, two conditions
have to be met simultaneously: the underlying lattice, from
which the cell box is generated, has to be both compatible
and reproducible. Compatibility means that there is a finite
minimum spacing between lattice points; reproducibility
means that the lattice can, at two different times, be gener-
ated by two equivalent basis vectors, i.e., the lattice points at
two different times occupy the same positions in space.3 This
has been shown for PCF �Lagrangian-rhomboid PBCs�, for
which the conditions for the remapping optimization have
been derived,4 and for PEF by Kraynik and Reinelt,5 but for
other geometries it can be difficult, if not impossible. An
extensive description of lattice properties can be found in
Refs. 3 and 6.

Kraynik and Reinelt5 provided, for the first time, the
conditions necessary for both reproducibility and compatibil-
ity of arbitrary lattices for planar extensional flow with re-
spect to multiphase flows. Their results were used by Todd
and Daivis7 and Baranyai and Cummings8 to independently
realize NEMD PBCs for planar extensional flow. More re-
cently, Hunt and Todd9 showed that the Kraynik–Reinelt
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PBCs are related to the Arnold cat map and derived much
simpler mathematical rules to find the necessary conditions
for the remapping. Furthermore, Matin et al.10 provided a
new cell list algorithm to reduce the computation time for
large systems.

In this work, we show how to derive compatible and
reproducible PBCs for planar mixed flow �PMF�, a linear
combination of planar shear and planar elongation, charac-
terized by nonzero values of both diagonal and off-diagonal
components of the strain-rate tensor. As stated above, fluids
in real situations can simultaneously show a combination of
several types of flows, hence the importance of developing
techniques that extend the range of flows that can be charac-
terized. Up until now, simulations of fluids undergoing
mixed flow were performed through an irreversible deforma-
tion of the cell box,11 bringing the simulation to an end when
the minimum distance requirements were broken. This
clearly restricted the available length of the simulations, and
the complexity of the systems which could be studied.

Brownian dynamics techniques alternatively can be used
for the characterization and study of single molecular chains
in solution1,12,13 undergoing any kind of flow; however, be-
cause of the impossibility of simulating interactions among
multiple units, they are not suitable for dense fluids. For
planar elongation, two alternative ways to overcome time
limits have been attempted: by means of the transient time
correlation function technique14 and by using frequency de-
pendent strain-rate techniques.15,16 The first approach allows
one to improve statistics for NEMD algorithms with a lim-
ited simulation time, while the latter allows the extrapolation
of properties of interest at the zero frequency limit. Neither
method has been employed for mixed flow to our knowl-
edge. However, recently a hybrid MD-MC coarse-grained
method that does not rely on the implementation of periodic
boundary conditions has been devised and tested for short
chain systems for various flow geometries in the weak field
limit.17 Like all such schemes, it is unsuitable in the strongly
nonlinear regime.

The idea for indefinitely extended PBCs for mixed flows
relies on the possibility of finding reproducible lattices for
any homogeneous and isochoric flow with a diagonalizable
velocity gradient tensor.5 The application of this idea to
NEMD simulations of mixed flow has already been outlined
in the Ph.D. thesis of Hunt.18

II. THEORY

The algorithm we present in this section makes use of
the results concerning both lattice reproducibility and com-
patibility, some of which are outlined by Kraynik and
Reinelt.5

A general lattice can be written at time t=0 as a set of
points

Li�0� = n1l1�0� + n2l2�0� + n3l3�0� , �1�

where nk is a set of integers and li�0� are linearly independent
lattice vectors. The time evolution for the lattice is given by

Li�t� = Li�0� · � , �2�

where �=exp��ut� and det �=1. For PEF, the velocity gra-
dient �u is constant, traceless, and diagonal.

The lattice is reproducible only if for some integers Nij

Li�t = �p� = Li�0� · � = Ni1l1�0� + Ni2l2�0� + Ni3l3�0� = Li�0� ,

�3�

where �p is the reproducibility time. However, Kraynik and
Reinelt5 noted that �u can be replaced by any diagonalizable
constant matrix with real eigenvalues and zero trace. In fact,
if �u=S ·D ·S−1 with D a diagonal matrix, a new set of basis
vectors

li��0� = li�0� · S−1 �4�

exists, which is reproducible under the flow generated by
�u. The tensor S−1 represents, therefore, a mapping neces-
sary to make the old basis li�0� reproducible in the new flow
geometry. If a diagonalization can be performed

� = exp��ut� = exp�S · D · S−1t� = S · exp�Dt� · S−1,

�5�

it follows that

Li��t = �p� = Li��0� · � = Li�0� · S−1 · S · exp�Dt� · S−1

= Li�0� · exp�Dt� · S−1 = Ni1l1�0� · S−1

+ Ni2l2�0� · S−1 + Ni3l3�0� · S−1

= Ni1l1��0� + Ni2l2��0� + Ni3l3��0� . �6�

This expression is equivalent to Eq. �3�, but in the new basis
li��0�.

For the development and testing of our algorithm, we
consider a velocity gradient tensor of the form

�uc = � �̇ 0 0

�̇ − �̇ 0

0 0 0
� �7�

that we call “canonical” and in which the expanding/
contracting directions are, respectively, along the x and y
axes, with elongational field strength �̇ and shear gradient �̇
along the y direction. We note that other parameterizations
for the velocity gradient are possible �see, for example, Refs.
19 and 20�. The canonical velocity gradient tensor can be
diagonalized as follows:

�uc = � �̇ 0 0

�̇ − �̇ 0

0 0 0
� =�

1 0 0

�̇

2�̇
1 0

0 0 1
�� �̇ 0 0

0 − �̇ 0

0 0 0
�

��
1 0 0

−
�̇

2�̇
1 0

0 0 1
� = S · D · S−1. �8�

The diagonal matrix D is the velocity gradient for PEF,
for which Kraynik and Reinelt5 had already identified a set
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of orthogonal, reproducible, and compatible basis vectors
li�0�. We can therefore apply the mapping of Eq. �4� and
obtain a reproducible lattice under mixed flow

l1��0� = l1�0� · S−1 = �cos �,sin �,0� · S−1

= �cos � −
�̇

2�̇
sin �,sin �,0	 ,

l2��0� = l2�0� · S−1 = �− sin �,cos �,0� · S−1

= �− sin � −
�̇

2�̇
cos �,cos �,0	 , �9�

l3��0� = l3�0� · S−1 = �0,0,1� · S−1 = �0,0,1� ,

where � is the angle between the simulation box basis vector
along the x direction and the extension direction for PEF �see
Fig. 1�. Only certain values of � give reproducible lattices
and we choose, for our simulations, the value of �
31.7°,
already used in the literature.

The lattice generated by the vectors li��0� in Eq. �9� is
reproduced after a period of time �p, that is, when the system
has experienced a total “Hencky” strain of �p= �̇�p=ln���,
where � is the eigenvalue of the map �uelongation.

9 The repro-
ducibility time �p is the same for both PEF and PMF. As can
be seen in Eq. �6�, the shear field changes the PEF basis
vectors �i.e., the tensor S−1�, but the evolution of the lattice is
due to the PEF velocity gradient alone �i.e., the tensor D�.

We now need to verify the compatibility of the lattice
with our flow geometry. Kraynik and Reinelt5 demonstrated
that reproducibility guarantees compatibility, i.e., the dis-
tance D�t� among the lattice points never falls below a mini-
mum and finite value Dm, such that the lattice points do not
overlap. However, we need to ensure that Dm is large enough
for our purposes, i.e., is not less than the interatomic poten-
tial diameter. We are interested in the evolution of the lattice
only in the xy plane; therefore, we set one corner of the cell
box as the origin and express D�t� in turn as the modulus of
the three vectors ri�t� , i=1,2 ,3, representing the other three
vertices of the cell box in the xy plane �see Fig. 2�.

We start from the equation for the streamlines for the
mixed flow, both in parametric form

x�t� =
�̇

�̇
y�0�sinh��̇t� + x�0�exp��̇t� ,

�10�
y�t� = y�0�exp�− �̇t� ,

and in nonparametric form

�̇y2 + 2�̇xy = c , �11�

where c is a numeric constant and x�t� , y�t� are in turn the
coordinates of the three corners of the cell. Using the above
expressions and solving the equation

d

dt
�r�t� · r�t�� = 2�xẋ + yẏ� = 0, �12�

we calculate the time tm at which the distance r�t� is a mini-
mum, substitute it into y�t� and x�t�, and find the distance Dm

tm =
1

4�̇
ln� �̇2y0

2 + 4�̇2y0
2

��̇y0 + 2�̇x0�2	 , �13�

y�tm� = y0 exp�− �̇tm� , �14�

Dm = �x�tm�2 + y�tm�2 =�� c − �̇y�tm�2

2�̇y�tm�
	2

+ y�tm�2, �15�

where x0=x�0� and y0=y�0�. The results show compatibility
for all the cases we evaluated.

A. Noncanonical mixed flow

For canonical mixed flow, the expanding and contracting
axes are determined by the directions of the velocity gradi-
ent’s eigenvectors and the field strength by their modulus.
For the velocity gradient in Eq. �7�, we have the following
eigenvalues:

� = 	 �̇ . �16�

A possible choice of eigenvectors is

u1 = �1,0,0�, u2 = �− 1,
2�̇

�̇
,0	 . �17�

The angle between them is therefore

FIG. 1. Initial configuration for a lattice �black dots� undergoing planar
elongational flow and corresponding streamlines �red lines�. The contracting
and expanding axes are orthogonal.

FIG. 2. Schematic representation of the vectors ri�t� identifying the three
vertices of the simulation box and used to verify the compatibility condition.
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canonical = cos−1�−
�̇

��̇2 + 4�̇2	 . �18�

From Eqs. �8� and �18� and Fig. 3, we can see that changes to
�̇ and �̇ result in a change of the angle between the axes of
expansion and contraction; however, the field along these
axes assumes always the values +�̇ and −�̇, respectively.

As expressed in Fig. 3, if �̇=0, then 
canonical

=� /2	n�, while if �̇→�, then 
canonical= 	n� with n an
integer. This means that for the canonical mixed flow, the
contraction axis always lies on a slope y=−ax with a�R+.

We now consider a general �noncanonical� matrix �unc,
where extension and contraction are along the x and y axes,
respectively, but with a shear gradient oriented along an ar-
bitrary direction

�unc = �g cos���sin��� + e − g sin���2 0

g cos���2 − g cos���sin��� − e 0

0 0 0
� ,

�19�

where � is the angle between the contracting �y in this case�
axis and the velocity gradient �negative toward the first Car-
tesian quadrant and positive toward the second, �see Fig. 4��.
g and e are the shear gradient and the elongational field
strengths, respectively �we use different symbols to avoid
confusion between the two representations�.

We now show that when the noncanonical strain-rate
tensor in Eq. �19� is able to generate a mixed flow, it can be
expressed in a canonical form in a rotated frame. To our

knowledge, this is the first time that this equivalence is
shown and it means that the canonical form is able to param-
eterize any planar mixed flow. The expansion and contrac-
tion directions are given by the eigenvectors of the �unc

matrix; if for a given choice of �g ,e ,��, we are able to find
a pair ��̇ , �̇�, such that the angles between the eigenvectors in
both canonical and noncanonical forms are the same, the two
representations will be equivalent up to a rotation. For the
noncanonical system we have the eigenvalues

� = 	 �e2 − 2eg sin���cos��� , �20�

and the following eigenvectors:

w1 = �1,
g sin���cos��� − e + �2eg sin���cos��� + e2

g cos���2 ,0	 ,

�21�

w2 = �− 1,
g sin���cos��� − e − �2eg sin���cos��� + e2

g cos���2 ,0	 .

�22�

Therefore the angle between them is

FIG. 3. �a� Initial configuration of a lattice �black dots� undergoing planar
mixed flow and corresponding streamlines �red lines�. The contracting and
expanding axes are nonorthogonal. �b� Schematic representation of how the
angle 
canonical varies for the different values of shear field keeping the
elongational field constant.

FIG. 4. �a� Schematic representation of the noncanonical flow with the
strain-rate gradient tensor of Eq. �7� when varying the parameter �. �b� The
gray cone represents the range of shear gradient axis orientations for which
the noncanonical flow of Eq. �19� degenerates into an elliptical flow.
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noncanonical = cos−1�−
g

�4e2 − 8ge cos���sin��� + g2	 .

�23�

For �=0, we fall into the canonical case. For any given set
�g ,e ,��, it is always possible to find a pair ��̇ , �̇� such that

noncanonical=
canonical, if the noncanonical eigenvalues are
real, i.e.,

sin�2�� 
e

g
. �24�

If the eigenvalues are 0, the flow reduces to pure shear flow,
while if they are imaginary, the flow becomes elliptical. The
condition given by Eq. �24�, visualized in Fig. 4�b�, is
equivalent �for any chosen values of g and e� to drawing a
cone around the slope y=−x; this is easy to see plotting
sin�2�� against �. If the shear gradient falls inside the cone,
the flow becomes elliptical. We note that there is one specific
case in which the flow is a pure rotation. This happens when
�=45° and g=2e, that is, when the matrix �unc is antisym-
metric. Any shear flow can, in fact, be decomposed as the
sum of an elongational flow plus a pure rotation. Therefore,
if the shear flow component of the noncanonical mixed flow
can be separated into a rotational and an elongational part,
and the two elongational fields so obtained cancel each other
out, what remains is just pure rotational flow.

III. ALGORITHM

Methods that perform an irreversible squeezing of the
simulation cell require a careful choice of �̇ to ensure the
achievement of a steady state before the box dimension in
the contracting direction reaches 2rc, where rc is the cutoff
distance for the potential energy function. Our algorithm
does not suffer from such a drawback. We cannot, however,
arbitrarily choose the simulation box dimensions. The map
S−1 in Eq. �9� is not volume preserving but has determinant
det�S−1�=−2�̇ / �̇. This map, as already pointed out, changes
PEF basis vectors, making them reproducible under PMF,
but while the basis vectors that generate the PEF box are
equal in modulus and orthogonal, the basis vectors that gen-
erates the PMF box depend �in both modulus and direction�
on the ratio between elongational and shear fields

�l1��0�� =�1 +
�̇2

4�̇2sin2 � −
�̇

�̇
cos � sin � ,

�l2��0�� =�1 +
�̇2

4�̇2cos2 � +
�̇

�̇
cos � sin � , �25�

l1��0� · l2��0� = −
�̇

2�̇
cos 2� +

�̇2

4�̇2sin � cos � .

This must be taken into account when setting up the
system at the beginning of a simulation. We want to stress
however, that the volume of the cell box does not change
with time during a specific simulation �we are in fact consid-
ering only isochoric flows�. The orientations of the basis vec-
tors are field dependent and will not in general be orthogo-

nal. It may be convenient however, to start a simulation from
a rectangular parallelepiped to be able to arrange particles on
usual lattices. To recover a rectangular parallelepiped, we
utilize the fact that the Hencky strain does not depend on the
choice of the origin along the time axis. This means that
Li��t

�+�p�=Li��t
�� for arbitrary t�; therefore, if a time t� ex-

ists at which the basis vectors for the mixed flow in Eq. �25�
are orthogonal, we can set t�= t� as the new time origin. To
obtain t�, we impose the basis orthogonality condition,
l1��t

�� · l2��t
��=0 and solve for t�.

The remainder of the implementation of the PBCs fol-
lows the same procedure outlined by Todd and Daivis.21 For
each time step, the simulation cell is rotated so as to align the
cell box with the laboratory x axis, making the PBC and the
minimum image distance calculation much easier and im-
proving the computational efficiency. This procedure is ap-
plied only to perform the PBCs and does not affect the par-
ticle dynamics. Once in the rotated frame, we compute the
displacement of the boundaries applying Eq. �10� for the
streamlines to the rotated primitive lattice vectors

Lkx� �t� =
�̇

�̇
Lky� �0�sinh��̇t� + Lkx� �t�exp��̇t� , �26�

Lky� �t� = Lky� �0�exp�− �̇t� , �27�

Lkz� �t� = Lkz� �0� , �28�

where the index k=1,2 ,3 defines the lattice vectors and the
primed variables refer to the rotated vectors. The angle by
which the simulation box must be rotated evolves as ��t�
=arctan�L1y� �t� /L1x� �t�� �see Fig. 5�.

In order to implement our mixed flow algorithm, we use
the corresponding SLLOD equations of motion for the par-
ticle dynamics,22

FIG. 5. Diagram outlining the PBCs and minimum image distance imple-
mentation. For each time step, the simulation box is rotated by an angle ��t�
such that one side of the box is parallel to the x laboratory axis.
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ṙi =
pi

mi
+ ri · �u =

pi

mi
+ �̇�xix̂ − yiŷ� + �̇yix̂ ,

�29�
ṗi = Fi − pi · �u = Fi − �̇�pxix̂ − pyiŷ� − �̇pyix̂ ,

coupled with a Nosé–Hoover thermostat.23 The SLLOD
equations of motion have been demonstrated to be the appro-
priate equations of motion for any homogeneous flow.24,25

Other sets of equations have been proposed at different
times,26–29 but they have all been found to be deficient in
some aspects.22,25

IV. RESULTS

To test the validity of our algorithm, we compare our
viscosity data with those found in Baranyai and Cummings.11

We simulate an atomic system interacting by the
Weeks–Chandler–Anderson30 �WCA� potential at a tempera-
ture T=0.722 and density �=0.8442. We use a time step of
�t=0.001. To reach the steady state, the system is equili-
brated for t=1000 time units and a further t=3000 time units
are used for data collection. The viscosity values and stan-
dard errors plotted in the table correspond to an averaging

over five independent runs. All the physical quantities are
expressed in reduced units where the unit of mass is the
particle mass m, the energy unit and the length unit are the
WCA parameters � and �, which are all set to unity.

From the relation between the heat production rate per
unit volume and the second scalar invariant of the strain-rate
tensor II= �̇ : �̇, Hounkonnou et al.31 derived a general ex-
pression for the viscosity of an isotropic fluid undergoing
isochoric flow

� = ��:�̇�/��̇:�̇� , �30�

where � is the stress tensor and �̇ is the strain-rate tensor. It
is then possible to obtain a viscosity for the mixed flow
which can also be expressed in terms of the PCF and PEF
viscosities �II=2�̇2 for PCF and II=8�̇2 for PEF�

�mixed =
− 2�̇Pxx + 2�̇Pyy − 2�̇Pxy

8�̇2 + 2�̇2

=
�8�̇2��PEF� + 2�̇2��PCF��

8�̇2 + 2�̇2 . �31�

We note that the formula in Eq. �31�, reported in Ref. 11,
contains some typographical errors.

TABLE I. Elongational viscosity and shear viscosity results for an atomic fluid undergoing mixed flow with
different combinations of field strengths. The fluid is thermostatted at a reduced temperature of T=1.0 and the
density is set at �=0.8442. The errors, in brackets, are twice the standard error of the mean of five independent
runs. We also report the viscosities obtained by Baranyai and Cummings �Ref. 11�, where a comparison is
possible.

PEF ��̇� PCF ��̇� � �PEF� � �PCF�

Baranyai and Cummings viscosities

� �PEF� � �PCF�

0.1 0.1 2.196 �0.006� 2.155 �0.009�
0.2 0.1 2.056 �0.001� 2.033 �0.006�
0.3 0.1 1.954 �0.001� 1.93 �0.01�
0.4 0.1 1.875 �0.001� 1.87 �0.02�
0.5 0.1 1.823 �0.000� 1.817 �0.009�
0.1 0.2 2.171 �0.001� 2.116 �0.003�
0.2 0.2 2.042 �0.001� 2.007 �0.003�
0.3 0.2 1.943 �0.001� 1.912 �0.005�
0.4 0.2 1.873 �0.000� 1.848 �0.005�
0.5 0.2 1.824 �0.001� 1.786 �0.005�
0.1 0.3 2.139 �0.002� 2.065 �0.002�
0.2 0.3 2.021 �0.002� 1.974 �0.002�
0.3 0.3 1.933 �0.001� 1.900 �0.002�
0.4 0.3 1.869 �0.001� 1.832 �0.004�
0.5 0.3 1.820 �0.001� 1.773 �0.002�
0.1 0.4 2.103 �0.003� 2.016 �0.001�
0.2 0.4 1.996 �0.002� 1.946 �0.002�
0.3 0.4 1.919 �0.002� 1.877 �0.002�
0.4 0.4 1.860 �0.001� 1.821 �0.002�
0.5 0.4 1.813 �0.001� 1.770 �0.003�
0.1 0.5 2.068 �0.001� 1.972 �0.001� 2.12 �0.04� 1.96 �0.04�
0.2 0.5 1.970 �0.001� 1.918 �0.001� 1.97 �0.04� 1.95 �0.04�
0.3 0.5 1.901 �0.001� 1.857 �0.001� 1.91 �0.04� 1.87 �0.04�
0.4 0.5 1.846 �0.001� 1.808 �0.001�
0.5 0.5 1.804 �0.000� 1.759 �0.001� 1.80 �0.04� 1.75 �0.04�
1.0 0.5 1.804 �0.001� 1.760 �0.002�
0.5 1.0 1.756 �0.001� 1.692 �0.001� 1.77 �0.04� 1.70 �0.04�
1.5 1.0 1.682 �0.000� 1.591 �0.002�
1.0 1.5 1.694 �0.001� 1.563 �0.000�
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In Table I we report only the PEF and PCF viscosities
defined as

�PEF =
Pyy − Pxx

4�̇
, �PCF = −

Pxy

�̇
�32�

and we report the general viscosity �mixed in Fig. 6 to easily
compare the results. Our viscosities agree very well with
those computed by Baranyai and Cummings �see Table I�.
Finally we note from Fig. 6 that the elongational field affects
the viscosity more than the shear field. The viscosity thinning
is more pronounced when the elongational field increases
and the shear field is kept constant rather than the other way
around.

V. CONCLUSION

In this work we have derived and implemented an algo-
rithm for indefinite NEMD simulation of fluids under mixed
flow. To accomplish this, we used results from the theory of

lattices. Similar to PEF simulation techniques,21 the cell box
deforms according to the flow streamlines and is remapped
to its original shape after a fixed amount of time without
discontinuities in physical properties. Statistics are therefore
improved and a broad range of fluids, such as dense alkanes
or polymer melts, can be investigated. Our viscosity results
are validated with previous data11 obtained with a finite-time
algorithm. To conclude, we have also shown �for the first
time, to our knowledge� that a mixed flow in which the shear
and elongation axes are not orthogonal is equivalent to one
in which they are orthogonal, for an appropriate choice of
field parameters.
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FIG. 6. Plot of the viscosity defined in Eq. �31� for an atomic fluid under-
going mixed flow with different combinations of field strengths. The fluid is
thermostatted at a reduced temperature of T=1.0 and the density is set at
�=0.8442. The error bars are not reported because they are smaller than the
symbols. �a� Viscosity for the different values of elongational field �on the x
axis� at fixed shear fields. �b� Viscosity for the different values of shear field
�on the x axis� at fixed elongational fields.
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